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The classical formalism for studying diffraction from helical

structures extended to include ligand binding is presented.

The diffraction from such a binding pattern is the convolution

of the Fourier transforms of the helix and the one-dimensional

binding distribution. It is shown in the present analysis that it

is not necessary to assume that the binding distribution is

strictly periodic, as long as its Fourier transform can be

determined. Analysis of the convolution gives a general

expression for the diffracted intensities and the selection rule

for the layer-lines. It shows two groups of layer-lines: one

group is the familiar layer-line set from the original helix,

while the other group shows reciprocal spacings shifted by 1/a

from the original helix layer-lines, where a is the average

repeat of the binding distribution. This group of layer-lines is

contributed by the ligand only. By way of examples, calculated

diffraction patterns from muscle actin ®laments with bound

myosin heads in three different binding patterns are

presented. This approach provides a method for determining

the ligand-binding distribution along helices by an analysis of

their X-ray diffraction patterns.
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1. Introduction

The helix is one of the most common biological forms. The

Fourier transform for a general helical structure was given by

Cochran et al. (1952). The classical method of calculation of

diffraction intensities from helices was provided by Franklin &

Klug (1955). Worthington & Elliott (1989) reformulated it to

allow the inclusion of paracrystalline disorder. Millane (1991)

directly derived the helix-selection rule by generalizing the

diffracted intensity of a non-crystalline ®ber with atoms

regularly distributed in one c repeat. In biological systems,

helices with bound ligands occur frequently, e.g. in muscle

®bers, the binding of myosin (cross-bridges) to the actin ®la-

ment and the troponin molecules distributed along the actin

®lament. Holmes et al. (1980) modeled the X-ray diffraction

patterns from insect ¯ight muscle in rigor by introducing a

periodic occupancy function for cross-bridges which modu-

lates the diffraction intensity from the actin ®lament. Using a

method similar to that of Holmes, layer-lines in the X-ray

diffraction patterns from skeletal muscle in rigor, which has a

symmetry different from that of the insect ¯ight muscle, were

explained by Yagi (1996). However, the distribution of ligand

binding has been assumed to be periodic, although frequently

the binding is marginally periodic, i.e. periodicity with

perturbations (`perturbed periodicity'). In the present study,

we introduce a general formalism for deriving selection rules

and intensities originating from ligand binding distributed in a

perturbed periodic function.



2. Helical binding structure and its diffraction

The notation used is de®ned in Table 1.

Consider the case where ligands bind to the sites of a

discrete uv helix but do not fully decorate it. The ligand-

binding sites in the z direction of the helical axis can be

described by a distribution function A(z) which is a set of

planes at the binding sites, i.e. A(z) =
P
�(z ÿ �k), where � is

the Dirac delta function and k = 1, 2, 3, . . . , N. The `ligand

helix' (helix partially occupied by ligands) is equal to this set

of planes multiplying the helix fully occupied by ligands

(Fig. 1). If the subunit = has M atoms, the fully decorated helix

can be considered as the summation of helices decorated by

those single atoms in =. The jth single atom in the helix has its

origin at (rj, 'j, zj). If the fully decorated helix is denoted by

the electron-density function �h, the electron-density function

� of the `ligand helix' can be expressed as � =
P

j�j =P
j�hAj(z), where Aj (z) =

P
j;k�(z ÿ �k ÿ zj) and j 2 =. For

simplicity, only the helix formed by the jth atom is considered.

The diffraction pattern of such a structure is governed by its

structure factor, which is the Fourier transform of �j, i.e.

Fj�R;  ;Z� � F��j� � F��hAj�z�� � Fh�R;  ;Z�FAi
�Z�; �1�

where F denotes the Fourier transform operation. In fact,

F (�j) is the convolution of two structure factors, Fh and FAj
.

Biological systems are generally non-crystalline. The intensity

diffracted by a non-crystalline ®ber depends on the Fourier±

Bessel structure factors (Franklin & Klug, 1955; Klug et al.,

1958). Following the derivation by Cochran et al. (1952) and by

Millane (1991), the structure factor for the helix uv is given by

Fh�R;  ; l� � fj

P1
n�ÿ1
fJn�2�Rrj� exp�in� � �=2��

� exp�i�ÿn'j � 2�zjl=c��g

� Puÿ1

p�0

exp�i2�p�l ÿ nv�=u�; �2�

which is non-zero only if (l ÿ nv) is a multiple of u, i.e.

l = nv + mu. It is the layer-line selection rule of the helix uv. By

introducing the Dirac delta function � to the layer-lines, (2)

may be rewritten as

Fh�R;  ;Z� � P1
n�ÿ1

G0n�R;  ; l���Z ÿ l=c�; �3�

where

G0n�R;  ; l� � fjJn�2�Rrj� exp�in� � �=2��
� exp�i�ÿn'j � 2�zjl=c��: �4�

Meanwhile, the structure factor of the binding distribution

function Aj for the jth helix is given by

FAj
�Z� � F PN

k�1

��zÿ �k ÿ zj�
� �

� FA�Z� exp�2�izjZ�: �5�

Therefore, using the convolution theorem substituting (3), (4)

and (5) into (1), the structure factor of the jth atom helix in the

`ligand helix' is given by

Fj�R;  ;Z� � R P1
n�ÿ1

G0n�R;  ; l���t ÿ l=c�FA�Z ÿ t�

� exp�2�izj�Z ÿ t��dt: �6�
After simplifying, the structure factor becomes

Fj�R;  ;Z� � fj

P1
n�ÿ1

Jn�2�Rrj� exp�in� � �=2�� �7�

� exp�i�ÿn'j � 2�zjZ��FA�Z ÿ l=c�;
which is the summation of the product of layer-lines arising

from the fully decorated helix structure factor and the

binding-distribution structure factor FA shifted by the corre-

sponding layer-line. Furthermore, with summation of all the

atoms over j in the ligand in (7), the entire structure factor of

the `ligand helix' is rewritten as
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Table 1
Notation.

r, ', z Cylindrical coordinates in real space
R,  , Z Cylindrical coordinates in reciprocal space
�(z) Dirac delta function
� Electron density of the ligand partially decorated on the helix
�h Electron density of the ligand fully decorated on the helix
A(z) Distribution function of the ligand-binding sites in the helix
FA(Z) Fourier transform of A(z)
�k Ligand-binding site coordinate along the helix axis
= A bound ligand containing a set of atoms
F Structure factor of the ligand partially decorated helix
Fh Structure factor of the ligand fully decorated helix
uv Helix with u repeat units in v turns
c Helix repeat
cb Common repeat of the helix and its bound ligand
l Index of the layer-line from the helix
lb Index of the layer-line from the bound ligand
L(Z) One-dimensional distribution interference function
Jn(R) The nth-order Bessel function of the ®rst kind
Gn(R, Z) Fourier±Bessel structure factor
I(R, l) Cylindrical averaged intensity on layer-line l

Figure 1
A `ligand helix' � is the product of a discontinuous helix �h and a set of
planes � arrayed perpendicular to the helix axis.
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F�R;  ;Z� � P
n2H

Gn�R;Z� exp�in� � �=2��FA�Z ÿ l=c�: �8�

After cylindrical averaging and elimination of the cross terms

of the different Bessel orders, the diffracted intensity of the

`ligand helix' is obtained by

I�R;Z� � P
n2H
jGn�R;Z�j2L�Z ÿ l=c�; �9�

where

Gn�R;Z� ÿP
j2=

fjJn�2�Rrj� exp�i�ÿn'j � 2�zjZ��: �10�

L(Z) [= |FA(Z)|2] is the one-dimensional interference function

of the binding sites A(z). The ®ber-diffracted intensity formula

in (9) is the extension from the case of the fully position-

discrete helix in the classical method to the case of the

partially positioned helix. L(Z) can usually be obtained by the

Fourier transform of the one-dimensional auto-correlation

function (a.c.f.), i.e.

L�Z� � F�A�z� � A�ÿz��: �11�
The a.c.f. of the binding distribution gives the binding-

distribution characteristics in reciprocal space. Consider that

the one-dimensional ligand distribution has a repeat of a that

matches the repeat c of the original helix with a common

repeat cb, i.e. (ka = qc = cb), where k and q are integers. The

`ligand helix' will exhibit layer-lines lb (= Zcb) only if

L(Z ÿ l/c) has peaks at multiples of 1/a in reciprocal space, i.e.

(9) has layer-lines following the selection rule

lb � ql � ks � q�vn� um� � ks; �12�
where lb is the index of the layer-line from the `ligand helix'

and l is the index of the original helix layer-lines. All n, m and s

are integers.

It is not necessary for the ligand to bind to the helix with an

exact periodicity. In fact, (9) allows us to relax the strict

periodic requirement and the ligand could bind to the helix in

an arbitrary distribution. For example, if the separation of

binding sites is in a Gaussian distribution with the mean

distance a between neighbors, then

L�Z� � N � 2
PNÿ1

m�1

�N ÿm�Qm�Z� cos�2�maZ�; �13�

where Q(z) = exp[ÿ�(wZ)2] (Vainshtein, 1966). Fig. 2 shows

L(Z) of the Gaussian distribution, which has periodic peaks

with separation of 1/a in reciprocal space. Actually, in the

special case when Qm(z) = 1, the binding distribution is an

equal separation distribution (Worthington & Elliott, 1989),

i.e. the ligands bind to the helical sites with an exact separation

`a' along the helical axis, and its L(Z) is equal to sin2(�NaZ)/

sin2(�aZ) (James, 1962).

3. Examples of hypothetical binding of myosin heads to
the actin ®lament

Here, we consider skeletal muscle as an example in order to

demonstrate the relationship between the binding distribution

and its X-ray diffraction pattern. In skeletal muscle, pairs of

myosin heads have a helical symmetry distribution around the

thick ®lament. The thick ®lament has three strands (Squire,

1972; Maw & Rowe, 1980) of 91 right-handed helices with a

14.3 nm interval (Huxley & Brown, 1967). The actin ®lament is

a non-integer left-handed genetical helix close to 13ÿ6

(Hanson & Lowy, 1963), with an interval of 2.75 nm between

actin monomers. The true beat

period between the myosin ®lament

and the actin ®lament is about

216 nm (Squire & Harford,

1988). The ratio of myosin ®la-

ments to actin ®laments is 1:2, so

that on average there are three

myosin heads from a single myosin

®lament in every 14.4 nm interval

along actin (Huxley & Brown,

1967). Along the actin helix, there

are 45 myosin heads from the

myosin ®lament versus 78 actin

monomers in 216 nm, if all myosin

heads are bound to the actin ®la-

ment. For the sake of simplicity, we

assume that the relative orienta-

Figure 2
The interference function of binding sites with Gaussian distribution. The
parameters of the distribution are the averaged period a = 10 AÊ (aa* = 1),
the standard deviation � = 0.08a [w = (2�)1/2�] and the lattice points
number N = 50.

Figure 3
Distributions of the myosin heads bound to actin ®lament: (i) an ideal periodic distribution (®lled circles),
(ii) `perturbed periodic' distribution (®lled squares) and (iii) random distribution (®lled triangles).



tions between the actin and the myosin ®laments are all

equivalent.

We assume that the `decorated' actin ®lament has an ideal

periodic distribution of the binding sites, i.e. there are 15 group

levels of myosin heads bound to actin ®laments with a 14.4 nm

period in the range of 216 nm.

A�z� � Pn�44

n�0

��zÿ �n�;

where

�3j � 2:75rint�216j=�15� 2:75��;
�3j�1 � �3j � 2:75;

�3j�2 � �3j � 5:5;

rint(x) is the integer nearest x and j = 0, . . . , 14. The binding

distribution and its interference function are shown in Figs. 3

and 4. The interference function shows a 1/14.4 nmÿ1 period in

reciprocal space. The repeat c of the actin helix is about 36 nm,

so that the common repeat between the actin helix and the

binding distribution is 72 nm, i.e. q = 2 for actin period and

k = 5 for the period of the binding distribution corresponding

to the selection rule (12). The selection rule of layer-lines is

then given by

lb � 2�ÿ6n� 13m� � 5s � ÿ12n� 26m� 5s:

Fig. 4(a) also shows that L(Z) has only one prominent periodic

peak, i.e. s = 0 or �1 in the selection rule. The diffraction

pattern of the ideal periodical binding is shown in Fig. 5(a).

The layer-lines can be divided as two categories: l2j where s = 0

and l|2j�5| where s =�1. By indexing to common repeat 72 nm,

layer-lines l2j corresponding to re¯ections 36.0, 18.0, . . . , 5.9

and 5.1 nm etc. are in the original actin layer-line positions.

These layer-lines are not only enhanced in intensity, but the

lateral position of the peaks on the layer-lines also moves

closer to the inner radius because the mass center of the

bound myosin has a larger radius than the actin monomer in

the actin helix. In contrast, layer-lines l|2j�5| corresponding to

re¯ections l3 = 24.0 nm and l7 = 10.4 nm etc. only come from

bound myosin heads and the positions of these layer-lines are

shifted from the actin layers to l|2j�5|. These shifted layer-lines

have the same order of the Bessel function as those original

actin helix layer-lines. However, the intensities of these layer-

lines are much lower than the original actin layer-lines,

because the intensity is modulated by the L(Z). The intensities

of the original lines, i.e. modulated by L(0), is proportional to

the square of the bound ligand number N2 and the intensities

of the shifted lines is modulated by L(Z 6� 0), which is much

less than N2.

As a second example, we modify the ideal periodic distri-

bution in the ®rst example by randomly removing one of the

three myosins in each periodic group and randomly redis-

tributing them. This results in a `perturbed periodic' distri-

bution (Fig. 3). The diffraction pattern from this type of

binding distribution is similar to that of the ®rst example

(Figs. 4a and 5b). The layer-lines l2j are the same in both

examples; the shifted layer-lines l|2j�5| are in the same position

in both examples. However, the intensities of the layer-lines

are weaker than those in the ®rst example, since the amplitude

of L(1/14.4) is lower.

In contrast, if the myosin heads bind to the actin helix

totally randomly (Fig. 3), the binding distribution interference

function L(Z) has no signi®cant peak (Fig. 4c) besides L(0) =

N2. It is not surprising that the pattern in Fig. 5(c) is similar to

that from the actin ®lament alone except that the lateral

positions of peaks move inward in the layer-lines.

The three examples illustrate the feasibility of distin-

guishing binding distributions from one another by their

diffraction patterns. By comparing Figs. 5(a) and 5(b) with the

experimental data (Xu et al., 1997), our preliminary analysis

indicates that the myosin heads of skeletal muscle in the rigor

state bind to actin in a periodic distribution rather than in a

random distribution. Details of the analysis will appear else-

where.

4. Discussion and concluding remarks

The advantage of the method presented here is its generality

and simplicity. The distribution of ligands is not required to be

strictly periodic as long as the interference function (Fourier

transform) of the distribution can be determined. It follows

that (9) can be used to interpret diffraction patterns. From the

intensity distribution of the layer-lines indexed on the original

helix, the mass distribution of the bound ligands can be

determined using the methods normally applied to general

helical structures. The second group of layer-lines are more

informative about the distribution of the ligand binding. If

ligands bind to the helix with some regularity, the interference
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Figure 4
The binding interference functions corresponding to three difference
distributions in Fig. 3. The binding-distribution interference function has
only one prominent peak at 1/144 AÊ ÿ1 in ideal periodic distribution (a),
and in `perturbed periodic' distribution (b). However, the intensities of
peaks in (b) is lower than that in (a). There is no prominent peak when
the binding distribution is random (c).
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function L(Z) should exhibit a peak in reciprocal space. This

leads to at least one extra observable layer-line on the meri-

dian. Conversely, the binding pattern on the helix can be

derived by indexing the second group of layer-lines. By

combining the information from the two groups of layer-lines,

the distribution of the ligand binding on helices can be

resolved.

Figure 5
The diffraction patterns of three different binding distributions are simulated. The X-ray diffraction pattern (a) has two groups of layer-lines (see text)
because the interference function (Fig. 4a) has only one prominent peak at 1/144 AÊ ÿ1. The diffraction pattern (b) is similar to the pattern (a) except that
the intensities of the second group of layer-lines are much weaker. The diffraction pattern (c) looks like the diffraction pattern of actin helix alone if the
myosin cross-bridges bind to actin helix randomly, since the interference function (Fig. 4c) does not have any signi®cant peak. All the layer-lines li are
indexed to the repeating length cb = 720 AÊ .

The principle of this work also can be extended to helices

with defects: i.e. helices with some subunits missing or with

`holes'. One may consider such a helix as an ideal one inter-

secting with planes which describe the remaining subunits. (9)

can then be applied to analyze the diffraction pattern.

Accordingly, the diffraction pattern will have two groups of

layer-lines if the remaining subunits have some periodicity

other than that of the original ideal helix. On the other hand,

the diffraction pattern will show only one group of the familiar

layer-lines of the unperturbed helix if the remaining subunits

are randomly distributed. This approach was applied to the

diffraction patterns from the relaxed rabbit skeletal muscle,

where the myosin heads of the thick ®lament are distributed in

two structural populations: one is ordered in a helical array

and the other is disordered (Xu et al., 1997, 1999; Malinchik et

al., 1997). When a myosin head becomes disordered, it leaves a

`hole' in the array. Using an approach similar to the present

one, we concluded that the two populations are in dynamic

equilibrium, since the diffraction patterns indicated a random

distribution of `holes'.

In conclusion, the formalism for the helical ligand binding

described here provides a convenient way to interpret the

X-ray diffraction patterns of helices with ligand binding and

determine their structures.

We would like to thank Dr Sengen Xu of the Laboratory of

Physical Biology, NIAMS, NIH for stimulating discussions.



References

Cochran, W., Crick, F. H. C. & Vand, V. (1952). Acta Cryst. 5, 581±586.
Franklin, R. E. & Klug, A. (1955). Acta Cryst. 8, 777±780.
Hanson, J. & Lowy, J. (1963). J. Mol. Biol. 6, 46±60.
Holmes, K. C., Tregear, R. T. & Barrington Leigh, J. (1980). Proc. R.

Soc. London Ser. B, 207, 13±33.
Huxley, H. E. & Brown, W. (1967). J. Mol. Biol. 30, 383±434.
James, R. W. (1962). The Crystalline State, Vol. II. London: Bell.
Klug, A., Crick, F. H. C. & Wyckoff, H. W. (1958). Acta Cryst. 11,

199±213.
Malinchik, S., Xu, S. & Yu, L. C. (1997). Biophys. J. 73, 2304±2312.

Maw, M. C. & Rowe, A. J. (1980). Nature (London), 286, 412±414.
Millane, R. P. (1991). Acta Cryst. A47, 449±451.
Squire, J. M. (1972). J. Mol. Biol. 72, 125±135.
Squire, J. & Harford, J. (1988). J. Muscle Res. Cell. Motil. 9, 831±851.
Vainshtein, B. K. (1966). Diffraction of X-rays by Chain Molecules.

Amsterdam: Elsevier.
Worthington, C. R. & Elliott, G. F. (1989). Acta Cryst. A45, 645±654.
Xu, S., Gu, J., Rhodes, T., Belknap, B., Rosenbaum, G., Offer, G.,

White, H. & Yu, L. C. (1999). Biophys. J. 77, 2665±2676.
Xu, S., Malinchik, S., Gilroy, D., Kraft, Th., Brenner, B. & Yu, L. C.

(1997). Biophys. J. 73, 2292±2303.
Yagi, N. (1996). Acta Cryst. D52, 1169±1173.

Acta Cryst. (1999). D55, 2022±2027 Gu & Yu � X-ray diffraction of helices 2027

research papers


